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It turns out that the precise form of the error produced
by vortex methods, and not only their order of conver-The analysis of the truncation error produced by particle methods

leads to artificial viscosity schemes. For vortex methods, they can be gence, can be precisely analyzed. This feature, which defi-
seen as eddy viscosity models, with anisotropic non-linear diffusion nitely distinguishes vortex methods from grid-based meth-
tensors. Numerical experiments on decaying incompressible 2D ods, stems from the fact that vortex methods and, more
turbulence illustrate the efficiency of the method, and in particular

generally, particle methods are based on exact weak solu-the fact that the diffusion stops acting in large coherent eddies.
tions of advection equations. The truncation error solelyFor compressible flows, this approach allows us to understand the

oscillations produced by particle methods and to derive new artifi- results from the mollification used in practice in the compu-
cial viscosity schemes. Q 1996 Academic Press, Inc. tations of the particle’s velocity. This mollification intro-

duces a cutoff in the short-range interactions of particles.
If we denote by u and g the velocity and vorticity fields and

1. INTRODUCTION by u–, g– the mollified fields, the truncation error involves the
tensorVortex methods provide convenient algorithms for the

simulation of inviscid or high Reynolds number flows [3,
8]. They consist in concentrating the vorticity field on a u–g 2 u–g (1)
discrete number of particles which evolve with the local
velocity of the flow computed in a self-consistent way.

Not surprisingly, this tensor is reminiscent to the ug 2 u–g–Diffusion is handled by either adding a random walk to this
tensor which is (in a velocity–vorticity formulation) thedeterministic motion, or by exchanging vorticity between
starting point of all eddy viscosity models. However, itnearby particles [3, 5]. For inviscid flows, their main charac-
turns out that (1) shares with the so-called Leonard stressteristics is that they do not introduce numerical diffusion
tensor u–g– 2 u–g– the nice feature that no closure model isand are quite robust in the sense that they do not suffer
required to express it, at the leading order, in terms of thetime step limitations usually found in grid-based discretiz-
resolved scales. Straightforward asymptotic expansions ac-ations of advection problems.
tually lead to a differential operator in g–, the order ofVortex methods are therefore a natural tool to investi-
which is related to the moment properties of the molli-gate the main features of two-dimensional incompressible
fying function.turbulence, in particular the mechanisms through which

Our approach will then significantly differ from the onesmall scales organize themselves into large eddies. Vortex
used in the derivation of the sub-grid models used in gen-calculations focusing on this problem, starting from an
eral in the context of finite-differences or spectral largeinitially chaotic vorticity field, were reported in [7]. It was
eddy simulations. These methods are related to eddy vis-observed that very soon the results diverge from those
cosity models through the assumption that the numericalobtained by high resolution pseudo-spectral calculations
schemes compute some kind of average of the solution,at high Reynolds numbers and that the merging of small
on a gridsize scale, and thus must be based on the filterededdies could not be satisfactorily achieved by vortex meth-
Navier–Stokes equations. We will instead start from theods. We will show results later which confirm this con-
equivalent equation satisfied by vortex schemes and try toclusion.
correct it in order to reproduce the large eddy dynamicsOur primary goal here is to understand how the trunca-
expected for the original, and not the filtered, Euler equa-tion error in vortex methods can be responsible for this
tions. As a matter of fact, that our corrections are of thefailure and, then, to propose optimal correction terms to
order of the mollifying function suggests that sub-grid mod-overcome these difficulties. By optimal we mean that we
els, which are all based on second-order diffusion terms,will seek corrections which will act only when and where
might be too dissipative if used together with high orderneeded, as opposed to Navier–Stokes models which even-

tually completely dissipate the vorticity field. discretizations of the equations. In other words, we believe
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that sub-grid models should not be derived independently Note that, since the flow is incompressible, volumes and
vorticity values are conserved as well along the particleof the choice of numerical method.

There are two additional features of our model that we trajectories. The fact that (5) gives the actual solution to
(2) is the very basic feature of the vortex method, on whichwish to emphasize. It is anisotropic by essence, and, unlike

Smagorinsky type models, does not introduce unwanted all the foregoing analysis will be based. It can be phrased
in precise mathematical terms in the framework of weakdissipation in the core of coherent eddies. From this point

of view our work is connected to two general issues raised measure solution to advection equations [4].
In writing (5), we have, however, assumed that the veloc-by LES models, namely the possible improved efficiency

offered by anisotropic models and the need, pointed out in ity field was given. We must account for the fact that it is
coupled to the vorticity field through (3), or, equivalently,recent LES research [9], to compute diffusion coefficients

after filtering out the largest scales of the fields to avoid the Biot–Savart law,
dissipation in the large eddies.

The derivation of an equivalent equation is also the u 5 uy 1 K p g. (6)
key ingredient to understand convergence properties of
particle methods for compressible flows. Arguments based

The kernel K has a singularity at the origin which it ison similar expansion, as for vortex methods, allow us to
customary to remove via the convolution by a mollifyingunderstand the oscillations resulting around shocks from
function. The resulting vortex blob method—to refer toa naive implementation of particle methods and to propose
the fact that particles are replaced by finite size blobs foroptimal artificial viscosity models.
the computation of the velocity—can be summarized byThe paper is organized as follows. Sections 2 to 5 deal

with vortex methods. The truncation error is analyzed in
Section 2 and interpreted in Section 3, and the eddy viscos- ­gh

­t
1 div(u«g)h 5 0, (7)ity model is derived in Section 4. Section 5 is devoted to

numerical results. We address the case of compressible
u« 5 K« p gh, (8)flows in Section 6 and draw some conclusions in Section 7.

2. TRUNCATION ERROR ANALYSIS FOR where
2D VORTEX METHODS

K« 5 K p z«Vortex methods are based on the velocity–vorticity for-
mulation of the incompressible Euler equations which in
2D read and the function z« is obtained from a cutoff function z by

the following scaling:
­g
­t

1 div(ug) 5 0 (2)
z«(x) 5 «22z(x/«). (9)

curl u 5 g; div u 5 0; u R uy at infinity. (3)
We will assume in the sequel that z has radial symmetry
and mean value 1:They consist in approximating the initial vorticity field g0

by a set of particles

z(x) 5 f (uxu); E z(x) dx 5 1. (10)
g0(x) Q gh

0(x) 5 O
p

apd(x 2 xp). (4)

These conditions lead to at least order 2 approximations.
The strength ap of particle p is the local circulation at xp , Additional moment properties of z yield higher order ap-
which can be represented as the product of the local value proximations. We refer to [2, 1, 4] for more complete
of the vorticity gp by the volume vp around the particle xp . discussions and analysis of these methods.

Conservation of the circulation dictates that particles One natural candidate to approximate the exact vorticity
will move with the local velocity of the flow and conserve g is the smooth approximate vorticity field
their strength. In other words the vorticity field generated
by gh

0 is, at all times, given by
g« 5 gh p z« . (11)

gh(x, t) 5 O
p

apd(x 2 xp(t)). (5)
The key point of our analysis will now be to derive the
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equivalent equation satisfied by g« . By convolving (7) with rearranging the derivatives and using a straightforward
change of variables in the integrals givez« we get

E2 5 m2«2 div([Du«]=g) 1 O(«4), (17)­g«

­t
1 div(u«g«) 5 E, (12)

where

where the truncation error E results from the fact that, in
the nonlinear term in the left-hand side, we only applied m2 5

1
2
E uxu2z(x) dx (18)

the convolution on g; so, if for simplicity we drop the
variable t,

and [Du«] is the tensor (­(u«)i/­xj). Note that the assump-
tion on the positivity of z was only made to make sure

E(x) 5 divx E g( y)[u«(x) 2 u«( y)]z«(x 2 y) dy. (13) that m2 is non-zero. We will come back to this point later.
Similar calculations can be found in [8], leading, how-

ever, to a diffusion tensor written in a non-conservativeTo better interpret this term, it is convenient to split it
form. Technically, splitting E into E1 1 E2 and obtaininginto two terms by writing g( y) 5 g(x) 1 (g( y) 2 g(x));
E2 in a conservative form will help us in the forthcomingwe obtain
discussion. Let us also mention that similar expansions
allow us to obtain the following expression for the drift

E 5 E1 1 E2 , term E1 ,

where E1 5 2m2«2 div(g curl g) 1 O(«4).

3. INTERPRETATION OF THE TRUNCATION ERROR
E1(x) 5 divx Sg(x) E [u«(x) 2 u«( y)]z«(x 2 y) dyD (14)

We now come to the discussion of the effect of the error
term E2 on the dynamics of the flow as computed by vortexE2(x) 5 divx E [g( y) 2 g(x)][u«(x) 2 u«( y)]z«(x 2 y) dy.
methods. We still focus in this section on the case of a
positive cutoff.(15)

One important issue concerning E2 is to understand its
diffusive or antidiffusive nature. Starting from (17), one

The first term E1 is a drift term which can be rewritten as natural way to address this issue is to think of the tensor
[Du«] in diagonal form: positive (resp. negative) eigenval-

E1 5 div(ũ«g), (16) ues will induce antidiffusion (resp. diffusion) along direc-
tions parallel to the corresponding eigenvectors. A first
obvious remark is that, due to the incompressibility of thewhere ũ« is a divergence-free vector field. In particular, it
flow, the trace of this tensor is zero. As a result any diffu-does not contribute to any enstrophy variation and we will
sion will be balanced by antidiffusion in a complementarynot consider it further at this time.
direction. This confirms the fact, already attested by theLet us focus on E2 . To have a better understanding of
conservation of energy resulting from the hamiltonian formthe nature of this error term it will be worthwhile to assume
of the dynamical system driving the motion of particles,momentarily that we deal with a non-negative cutoff func-
that vortex methods do not produce net numerical diffu-tion. A Taylor expansion of g and u« inside the right-hand
sion, as would most eulerian methods.side of (15) yields

However, this balance of diffusion and antidiffusion does
not necessarily mean that vortex methods will correctly

E2(x) 5 divx O
i, j

E [( yi 2 xi)­iu«(x)] reproduce the features of inviscid 2D flows. To substantiate
this claim, we have performed calculations based on the

[(xj 2 yj)­jg(x)]z«(x 2 y) dy same initial conditions as in [7]. We start from an initial
vorticity with, in the Fourier space, a spectral law in k21 and
random phase. This field is normalized to have a maximum1 O SE ux 2 yu4z«(x 2 y) dyD .
vorticity value of 1. We then interpolate this field on a
particle mesh initialized uniformly on the unit square. To
handle periodic boundary conditions in a simple and fastBut, due to the radial symmetry of z« , the cross terms e

[( yi 2 xi)][(xj 2 yj)]z«(x 2 y) dy vanish for i ? j so that way, the velocity calculations are done through a vortex-



302 G.-H. COTTET

FIG. 1. Vorticity values at t 5 20 and t 5 60 for a pure Euler scheme (bottom pictures) and the eddy viscosity model (top pictures).

in-cell scheme. In this method, at each time step the circula- still guess them in the right picture, but the mixing is actu-
ally achieved soon afterwards).tions of the particles are projected on a fixed regular grid;

then a fast Poisson solver is called to compute the stream Another illustration of the same mechanisms can be
found in the vortex sheet calculations [6]. In this case,function on this grid. Finite differences are used to get

velocity values at the grid points. Finally velocities are although the flow is much better organized by the selection
of one particular perturbation, small eddies excitated atinterpolated from the grid to the particles. Although in

practical implementation this scheme clearly differs from late times by roundoff errors have to be filtered out in
order to avoid spurious effects on the large eddies. Wethe completely grid-free one outlined in the previous sec-

tion, we believe that the truncation mechanisms are similar, will also see in Section 5 that to some extent remeshing
the particle grid is, besides filtering, one way to handlewith the interpolating function playing the role of the cut-

off function. small scales.
The eddy viscosity scheme that we will derive is basedThe two bottom pictures of Fig. 1 show, in grey levels,

the vorticity fields at times 20 (left picture) and 60 (right on the claim that the antidiffusive part of E2 is responsible
for the failure of the vortex methods in allowing the merg-picture). The finite-difference grid for the velocity calcula-

tion is 64 3 64. To have a good overlapping of particles, ing of small eddies. Before getting to this, let us now discuss
further the tensor in the right-hand side of (17). Let usat least at t 5 0, the particle mesh is 128 3 128. One

observes that, in the first picture, small scales tend to orga- split the velocity derivatives into strain and vorticity. With
the notations:nize into filaments and large eddies. However, this merging

process does not completely succeed, and, at later times,
the flow tends to a complete mixing of positive and negative s1 5

­u1

­x1
2

­u2

­x2
; s2 5

­u2

­x1
1

­u1

­x2
;

vorticity, and all the coherent eddies disappear (one can
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since div u 5 0, we can write E [u(x) 2 u( y)] ? =z(x 2 y) dx 5 2u( y) ? E =z(x 2 y) dx

1 E divx[u(x)z(x 2 y)] dx 5 0.
[Du] 5

1
2 F s1 s2 2 g

s2 1 g 2s1
G .

We are left with the second integral, which, upon rewriting
2g( y) 5 [g(x) 1 g( y)] 2 [g(x) 2 g( y)] and using the

The determinant of this matrix is (g2 2 usu2)/4. As a result, parity of z yields
it has real eigenvalues as soon as the strain usu 5
Ïs2

1 1 s2
2 is larger than the absolute vorticity. The corre-

sponding zones are called hyperbolic, to refer to the trajec- d
dt

E g2 dx 5 2 E E [g(x) 2 g( y)]2[u(x) 2 u( y)]
(20)tories around saddle-points (a typical such configuration

is at a stagnation point in a potential flow). From our ? =z(x 2 y) dx dy.
analysis strong diffusion and antidiffusion are very likely
to be produced by vortex methods in such parts of the flow.

Note that we would have obtained the same result if we
had started from E2 . We have actually checked on the

4. THE EDDY VISCOSITY MODEL integral exact form of E that the term E1 does not contrib-
ute to enstrophy production. The interpretation of (20) is

As we said above, we believe that, in order to reproduce now clear: the enstrophy will increase through the ex-
the basic features of 2D turbulence, it is important to change of vorticity between points x and y whenever
prevent the antidiffusive mechanisms embedded in the er- they satisfy
ror term E. To derive our model, since clearly we cannot
afford to diagonalize the error tensor and explicitly correct

[u(x) 2 u( y)] ? =z(x 2 y) , 0. (21)the positive eigenvalue, we propose to go back to the
integral form of the equivalent equation, with the error
term written in (13), and to evaluate the enstrophy produc- If we consider one more time the particular case of a
tion based on this equation. Any positive production of positive cutoff decaying at infinity and with radial symme-
enstrophy will then be interpreted as the indication of try then =z(z) 5 zf 9(uzu)/uzu with f 9 # 0, so that (21) is
antidiffusivity, and our model will be designed to compen- equivalent to
sate for this enstrophy production.

Let us now get into the details of the derivation. We
[u(x) 2 u( y)] ? (x 2 y) . 0. (22)

first observe that, to the leading order, we may replace g
by g« in (13). We then multiply (13) by g« and integrate

This confirms in particular the fact, predicted from theby parts. Dropping everywhere the subscript « for clarity,
asymptotic expansions of Section 3, that if the velocity iswe obtain
generated by a steady circular patch of vorticity (zero
strain) then there is neither diffusion nor antidiffusion.

Now, a minimal artificial viscosity model must precisely1
2

d
dt

E g2 dx 5 E E g(x)g( y)[u(x) 2 u( y)]
(19) cancel the enstrophy production arising under condition

(21). To achieve this goal, the proper vortex scheme con-? =z(x 2 y) dx dy.
sists in updating the vorticity values at the particle loca-
tions through

We next rewrite g(x) 5 g( y) 1 g(x) 2 g( y) to get

dgp

dt
5 O

q
(gp 2 gq)vqh[u(xp) 2 u(xq)]

(23)
1
2

d
dt

E g2 dx 5 E E g2( y)[u(x) 2 u( y)] ? =z(x 2 y) dx dy

? [xp 2 xq] f 9« (uxp 2 xqu)uxp 2 xqu21j2 ,
1 E E [g(x) 2 g( y)]g( y)[u(x) 2 u( y)]

where the index 2 means that we take the negative part? =z(x 2 y) dx dy.
of the quantity and we recall that gp and vp respectively
denote the vorticity value and the volume of the particle
located at xp . Indeed, multiplying (23) by vpgp , summingThe first integral in the right-hand side above vanishes, for

g( y) can be put out of the integral with respect to x and over p, and using symmetry properties yield



304 G.-H. COTTET

d
dt SOp vpugpu2D5 O

p,q
vpvq(gp 2 gq)2h[u(xp) 2 u(xq)]

? [xp 2 xq] f 9« (uxp 2 xqu)uxp 2 xqu21j2

which is the appropriate cancellation, at the discrete level
(through quadrature of the integrals over particles), of the
enstrophy production resulting from (20).

The diffusion scheme given by (23), which is reminiscent
of particle strength exchange methods [5], is clearly conser-
vative. If f 9 # 0 exchange of vorticity will only concern

FIG. 2. Comparison of the eddy viscosity model and a pure Navier–diverging particles. As a result, if the velocity field is gener-
Stokes model.ated by a circular patch of vorticity, there will never be

any exchange of vorticity between particles, even if there
is a strong gradient of vorticity inside the patch. This con-
trasts with Smagorinsky-type models, which would pro- viscosity allowed by the resolution of the grid. The left
duce strong diffusion in the same situation. picture shows the corresponding vorticity fields obtained

In closing this section we wish to emphasize that the with the model (23). It can be observed that the filaments
above derivation did not rely on the asymptotic expansions are better preserved with our model, which presumably
of the last sections, since it is based on the integral form diffuses along rather than across them. Also the enstrophy
of the error term. In particular it applies to high order level is about 20% higher for the left vorticity field (this is
cutoff, in which case it provides hyperviscosity-type mod- not apparent in the pictures, which for better clarity use
els. Next, the fact that the scheme (23) is by essence aniso- renormalized vorticity values), which confirms that our
tropic, as it distinguishes for the diffusion among directions model is less dissipative than the Navier–Stokes model,
of compression and dilatation, illustrates the flexibility of although the strength of the ‘‘equivalent’’ viscosity pro-
particle strength exchange schemes in handling diffusion: duced by (23) can be locally significantly bigger (in the
the particle mesh allows us to discretize more directions regions of high strain) than the value of n used in the
than a grid-based method. Navier–Stokes experiment.

The next experiment precisely aimed at evaluating this
5. NUMERICAL RESULTS local equivalent viscosity n(x), which, on the basis of the

analysis in Section 2, we measured asWe first focus on the periodic decaying turbulence exper-
iments already mentioned in Section 2. Our computations
are based on the same 64 3 64 vortex-in-cell scheme. To n(x) 5 m2«

2 sup
y

[[u(x) 2 u( y)] ? [x 2 y]]1

ux 2 yu2
.

implement our diffusion scheme (23), we used the hat
function as cutoff z, normalized such that it has the same
order 2 momentum as the piecewise quadratic TSC inter- For the same parameters as for the previous experiment,

the left pictures of Fig. 3 show the vorticity fields at timepolation function.
The two top pictures of Fig. 1 show that vorticity values 60 and 120, and the right ones picture the values of n

encoded such that large viscosity appears in white. Theat the same times as the bottom pictures. We observe
that the coherent eddies do appear, organized either in correlation between the flow patterns and viscosity values

is striking. It is in particular clear that the regions of strongfilaments or in patches. We wish to point out that, if a finer
grid was used, like the one in the next experiment, the viscosity coincide in the top pictures with the saddle-points

in between the two big eddies which will ultimately leadpure Euler model would take more time to fail and actually
would provide results very close to the bottom pictures to a steady-state dipole. This confirms the analysis of the

error term E in terms of the strain in the flow.for early times. This is coherent with our analysis, which
shows that truncation errors are driven by the grid resolu- We just mentioned that the flow goes toward a steady

state. To substantiate this claim we show in Fig. 4 thetion and not by the overlapping of blobs.
The key point is now to compare this method to a stan- vorticity at some later time and the scatter plot obtained

by plotting for each grid point the coordinates correspond-dard linear artificial viscosity model. In Fig. 2 we show
results obtained with the VIC method, with a 128 3 128 ing to the value of the stream function and of the vorticity.

These values are concentrated around a curve, g 5 g(c),grid and a particle mesh of 256 3 256. The right picture
depicts the vorticity field at time 160, for a Navier–Stokes which indicates that we are not far from a steady-state so-

lution.model with viscosity n 5 1025, which is about the minimal
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FIG. 3. Correlations between the flow patterns (left pictures) and the FIG. 5. Comparison of the eddy viscosity model (bottom-right) and
strength of the diffusion tensor (right pictures) at times 60 and 120. the pure Euler model with 0 (bottom-left), 1 (top-left), and 2 (top-

right) remeshings.

We next wanted to compare the effect of our eddy viscos-
is sought in order to make sure that remeshing does notity model and that of remeshing. One can actually advocate
introduce too much dissipation. However, our experiencethat the reason for the vortex method to fail in a pure Euler
on this particular type of flow was that it was necessary tomodel is that the grid mesh gets very strongly distorted and,
have a slightly dissipative remeshing procedure to avoidthus, does not allow the accurate description of the flow. In
introducing even more noise in the already nonsmoothparticular, the overlapping between blobs which is required
vorticity field. In the computations we present, we havefor the convergence of the method is soon violated. The
used the TSC interpolation function and, when remeshing,goal of remeshing is to recover a regular grid at selected
we not only recompute vorticity values on a regular gridtimes of the computation.
of grid size h, but also volumes of the particles which canTechnically, remeshing amounts to interpolating vortic-
slightly differ from h2.ity values from one grid to another. The choice of the

In Fig. 5, we reproduce on the bottom pictures the vortic-interpolation function is crucial to keep as small as possible
ity fields at time 60, obtained by the Euler and the eddythe discrepancies between the vorticity field before and
viscosity model. The top pictures show the vorticity valuesafter remeshing. In general, the conservation of Euler in-
obtained when the particles were remeshed once (at timevariants, like total vorticity and linear and angular impulse,
20) for the left picture, or twice (at times 20, 40) for the
right picture. In the last case, the results are very close to
those obtained by the eddy viscosity model, apart from a
more noisy look of the filaments, and the fact that the
enstrophy level of the remeshed field is higher than or the
eddy viscosity model (this explains why the grey levels are
not identical on both images). If one believes that the
remeshed calculation gives the ‘‘true’’ solution of the Euler
equations, at this low resolution, one can conclude that,
up to minor details, the eddy viscosity models preserved
rather well the features of the flow.

As a last illustration of our method, we performed some
numerical tests with high order cutoff. In this case we use

FIG. 4. Vorticity and scatter plot c 2 g at late time. the plain vortex blob method (with a grid-free evaluation



306 G.-H. COTTET

6. COMPRESSIBLE FLOWS

We will now see how the same strategy as above allows
us to derive artificial viscosity models for the particle ap-
proximation of compressible flows. We will focus on the
very basic 1D model for such flows, namely Burger’s
equation,

­u
­t

1
1
2

­(u2)
­x

5 0. (24)

The naive way to construct particle methods for this equa-
tion is to replace the initial value of u by a set of particles
that will move with the local velocity field. Although this
field can develop discontinuities, it is important to have a
well-defined motion of the particles. This can be done again
by regularizing the velocity, either through the interpola-
tion of particle values on a grid (the so-called PIC meth-
ods), or through the direct convolution of the particle dis-
tribution with a cutoff function.

Our motivation in the incompressible case was to repro-
FIG. 6. Vortex street resulting from the merging of two shear layers. duce some fine features of the Euler equations. Here we

will be much less ambitious; actually some very important
steps in the calculations of Sections 2 to 4 were heavily
based on the fact that the velocity field was divergence-of the velocities). The physical case we had in mind was
free. Our goal here is only to try to understand the conver-a jet consisting of two shear layers of opposite strength.
gence of particle methods. It is actually striking that, toThe shear layers are separated upstream by a fixed distance
our knowledge, no convergence proof exists even in theto mimic the wake behind an obstacle. The parameters of
very simple situation just described. The reason is that, ifthe problem were the following: the distance between the
for a given regularization parameter « one lets the numbershear layers was 1, the width of each shear layer was 0.05,
of particles tend to infinity, the best one can hope is toand the far-field velocity was 1. Each shear layer was dis-
converge to the solution of the equationcretized with 10 particles in the width, and the generation

of particles upstream was such that the average distance
of the particles in the direction of the mean flow was about ­u

­t
1

1
2

­(u«u)
­x

5 0. (25)the width of the layers. Finally, we prescribed hyperbolic
tangent profiles for the velocity in each layer and we trig-
gered the instability of the shear layers by introducing a

It turns out that this equation is not well behaved as «small random noise in the strength of the vortices in-
tends to 0. The only control one can get on its solution,jected upstream.
uniformly with respect to «, is the mean value of u. InIn Fig. 6 we have represented a sequence of vorticity
particular it is not possible to obtain any maximum princi-values (from left to right, bottom to top), showing the
ple or even any control on its energy. As a matter of fact,merging of small eddies at various scales, leading to a
one can easily understand how a simple-minded implemen-vortex street consisting of rather well-organized dipoles.
tation of the method leads to overshoots around shocks;At the last stages of the calculation there were about 15,000
at a steady shock, the mollified velocity is 0, so particlesparticles. Due to the random forcing introduced at the
will accumulate from both sides and lead to large localinjection of the particles, it is rather difficult to compare
values of u.results obtained with different parameters or different sim-

Let us derive an equivalent equation for (25). This equa-ulation methods. The only comment we wish to make on
tion will lead us to the proper artificial model to ensurethese simulations is that we never used any remeshing and
the decay of energy.that, in the same conditions, we were not able to keep

If we assume momentarily thatan organized vortex street for such a long time with a
Navier–Stokes code using a viscosity value of the order
of «2. u« 5 u p z« ; z« 5 «21z(x/«),
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where z is a positive even cutoff, then we can write (29) is valid even for nonpositive cutoff, in which case it
leads to an hyperviscosity model.

The final particle scheme based on (29) isu« 5 u 1 m2«
2uxx 1 O(«4), (26)

where m2 5 e x2z(x) dx. Upon inserting (26) in (25), multi-
u Q O

p
upvpd(x 2 xp);

dxp

dt
5

1
2

u«(xp);plying it by u, and integrating, we obtain, after cancellation
of the contribution of u2,

dvp

dt
5

1
2 Sdu«

dx
(xp)D vp

d
dt

E uuu2 dx 1
m2

2
«2 E (uxxu)xu dx 5 0. (27)

and
Successive integrations by parts yield

dup

dt
5

1
2 Oq vq Sup 2 uq

xp 2 xq
D

2
(up 2 uq)z«(xp 2 xq). (30)E (uxxu)xu dx 5 2 E uxxuux 5 2

1
2
E (u2

x)xu dx

Note that, as for incompressible flows, this model distin-
5

1
2
E u2

xux dx.
guishes between compression and expansion zones, but
with the opposite conclusion; dissipation must be added
in compression zones.As a result, the increase of energy comes from strong

Numerical tests [11] show that this model is actually ablenegative values of the velocity gradient, which precisely
to get rid of overshoots without introducing spreading onoccurs at shocks. The artificial viscosity model which will
the shocks.prevent it is now clearly

This model generalizes easily to several dimensions by
splitting the flux and adding the contribution of each direc-

ut 1
1
2

(u«u)x 1
m2

4
«2((ux)2 ux)x 5 0. (28) tion in the energy balance. In the resulting model one then

has to repace ux by the divergence of u. Our result is then
very similar to the artificial viscosity models currently usedThe particle discretization of the diffusion term above re-
in SPH methods [10], in particular, in that only approachingquires its integral representation. Straightforward asymp-
particles contribute to dissipation. However, in these mod-totic expansions yield
els there is in general no explicit reference to any motion
regularization, so the parameter « has to be somehow ad-
justed to the separation scale of particles; by contrast ourm2

2
«2(aux)x 5 E a Sx 1 y

2 D (u( y) 2 u(x))z«( y 2 x) dy
model is free of ad-hoc constants and clearly shows the
links between the needed amount of viscosity and the regu-1 O(«4).
larization introduced in the motion of particles. We will
present elsewhere numerical simulations based on (30).If a 5 (ux)2 and if, in addition, we write

7. CONCLUSION
ux Sx 1 y

2 DQ
u( y) 2 u(x)

y 2 x
,

We have shown that the concept of an equivalent solu-
tion is powerful to allow us to derive a nontrivial artificial

we obtain viscosity model for particle methods. We view this as a
consequence of the fact that particle methods are based
on exact solutions of advection equations. The error comes

ut 1
1
2

(u«u)x 1
1
2
E Su( y) 2 u(x)

y 2 x D
2

(29)
from the short-range cutoff needed for evaluating the ve-
locities of particles.

(u( y) 2 u(x))z«( y 2 x) dy 5 0. In compressible flows, this error results in oscillations
around shocks. The analysis of the equivalent equation
sheds some new light on artificial viscosity models currentlyIt turns out that the decay of energy can directly be checked

on the integral form (29) through straightforward algebraic used in SPH methods and may lead to more efficient
models.calculations that we do not reproduce here. This means

that, again, the asymptotic expansions which led us to (29) For incompressible flows, this analysis allows us to un-
derstand the mechanisms which drive vortex simulationsare not actually needed for its justification. In particular,
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